
MA Models as an Infinite-Lag AR Models

There are two major approaches to MA models:

• An extension of a white-noise series.

• An Infinite order AR model with some restrictions.

𝐴𝑅 ∞ = 𝑀𝐴(1)

Infinite-Lag AR Model
(with certain restrictions)

Simple MA Model

The former is pretty straight-forward, since one way to think about a MA average model is that it is a sum of
weighted white-noise. Of course, this only holds true when the residuals resemble white-noise.

In his short lecture, we are going to focus on the links between AR and MA models and how one can be
expressed in terms of the other. In particular, we are going to focus on how a special case of the Autoregressive
model can be expressed as a simple moving-average model.
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𝐴𝑅 ∞ Model

Let’s start by elaborating what we mean by “infinite”-lag AR model: 𝐴𝑅 ∞

By “infinite”-lag AR model, we mean an autoregressive model, which takes the values of infinitely many previous 

periods. Of course, this is just a theoretical concept. 

We cannot have an infinite data set, even when working with big data. Thus, no data set would ever satisfy the 

information criteria required for this kind of model. Hence, an infinite lag autoregressive model is not applicable 

in practice.

Despite this, let us write out what a modelling such a variable would look like. Since will be modelling returns in 

the start of this section, suppose that “r” is a variable, which follows this model. Then, the 𝐴𝑅 ∞ looks like so:

𝑟𝑡 = 𝑐 + 𝜙1𝑟𝑡−1 + 𝜙2𝑟𝑡−2 +⋯+ 𝜖𝑡

Value of Interest
Constant Past Values

Parameter Coefficients
Residuals
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Parameter Restrictions

Having absolute freedom on infinitely many parameter coefficients is unreasonable, since we would have no
idea of how the data behaves. Instead, we are going to try and make the model practical and assume all the 𝜙
coefficients obey certain restrictions.

A special case of this idea is when all the coefficients are negative and progressing geometrically. In other
words, the model looks like so:

𝑟𝑡 = 𝑐 − 𝜃1𝑟𝑡−1 − 𝜃1
2𝑟𝑡−2 − 𝜃1

3𝑟𝑡−3 −⋯+ 𝜖𝑡

Here, the coefficient 𝜃1(theta one) is essentially −𝜙1. In fact, a more general representation would suggest that
𝝓𝒊 = −𝜽𝟏

𝒊 .

Since all models include a constant and a residual, even if they end up being insignificant, we can rewrite the
equation on top. If we move all the AR parts of the model on the left, we are left with a different representation
of the same model.

𝑟𝑡 + 𝜃1𝑟𝑡−1 + 𝜃1
2𝑟𝑡−2 + 𝜃1

3𝑟𝑡−3 +⋯ = 𝑐 + 𝜖𝑡
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Past and Present Values

By the definition of AR Models, we can express 𝑟𝑡−1 in a similar way.

More precisely, if the model suggests that 𝑟𝑡 + 𝜃1𝑟𝑡−1 + 𝜃1
2𝑟𝑡−2 + 𝜃1

3𝑟𝑡−3 +⋯ = 𝑐 + 𝜖𝑡, then clearly we can
conclude the following.

𝑟𝑡−1 + 𝜃1𝑟𝑡−2 + 𝜃1
2𝑟𝑡−3 + 𝜃1

3𝑟𝑡−4 +⋯ = 𝑐 + 𝜖𝑡−1

Remember that, unlike the AR model, the MA one does include any values of past period, but only past errors.
Thus, we need to get rid of all the 𝑟𝑡−𝑖 components. We are aware this sounds completely out of the blue, but
please be patient a bit more since everything will fall into place in just a bit.

We can multiply both sides of the 𝑟𝑡−1 equation to get this new one:

𝜃1𝑟𝑡−1 + 𝜃1
2𝑟𝑡−2 + 𝜃1

3𝑟𝑡−3 + 𝜃1
4𝑟𝑡−4 +⋯ = 𝜃1𝑐 + 𝜃1𝜖𝑡−1
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Combining the Equations

Now, let’s observe the 𝑟𝑡 and the new 𝑟𝑡−1 equations.

𝑟𝑡 + 𝜃1𝑟𝑡−1 + 𝜃1
2𝑟𝑡−2 + 𝜃1

3𝑟𝑡−3 +⋯ = 𝑐 + 𝜖𝑡

𝜃1𝑟𝑡−1 + 𝜃1
2𝑟𝑡−2 + 𝜃1

3𝑟𝑡−3 + 𝜃1
4𝑟𝑡−4 +⋯ = 𝜃1𝑐 + 𝜃1𝜖𝑡−1

If you look closely, all the AR components (like 𝜃1𝑟𝑡−1 and 𝜃1
2𝑟𝑡−2) for the two equations are identical. Hence, we

can subtract the bottom one from the top one.

The resulting equation leaves 𝑟𝑡 only on the left and looks like so:

𝑟𝑡 = 𝑐 + ϵ𝑡 − 𝜃1𝑐 − 𝜃1𝜖𝑡−1
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Rearranging the Model

We can obviously transform the equation to account for the parts using the constant 𝑐. Then, the model
becomes:

𝑟𝑡 = 𝑐 1 − 𝜃1 + ϵ𝑡 − 𝜃1𝜖𝑡−1

Additionally, we can also rearrange the model so that we get the familiar look of a constant, some parameters
and their coefficients and a residual.

𝑟𝑡 = 𝑐 1 − 𝜃1 − 𝜃1𝜖𝑡−1 + ϵ𝑡

Notice how the first part of the model (𝑐 1 − 𝜃1 ) is time-invariant. What we mean is that it does not rely on “t”,
so the value is constant in every time period. Hence, we can substitute it with some other constant variable.
Thus, the new equation looks like:

𝑟𝑡 = 𝑐0 − 𝜃1𝜖𝑡−1 + ϵ𝑡
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MA(1) Model

Now let’s quickly examine this new representation of the model. 

𝑟𝑡 = 𝑐0 − 𝜃1𝜖𝑡−1 + ϵ𝑡

Value of Interest

Constant Past Errors

Residuals

As you can see, this current model predicts current values solely based on the mistakes in our predictions one 

period ago. Hence, it contains a Moving-Average aspect for precisely 1 lag. 

Additionally, since ϵ𝑡 and 𝜖𝑡−1 are the residuals from an AR model, then we expect them to be white noise. 

Hence, why we stated that an MA model is also known as an extension of white noise. Since adding two WN 

series together −𝜃1𝜖𝑡−1and ϵ𝑡, results in a WN series (mean and variance remain the same), then an MA model 

is essentially predicting what is known as white noise, with a drift, with the “drift” coming from the 𝑐0 factor.
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