The 365 Data Science team is proud to invite you to our own community forum. A very well built system to support your queries, questions and give the chance to show your knowledge and help others in their path of becoming Data Science specialists.
Ask
Anybody can ask a question
Answer
Anybody can answer
Vote
The best answers are voted up and moderated by our team

error message in python coding

error message in python coding

0
Votes
2
Answer

Hi,
I got an error message in python coding in the lesson of ‘SQL + TABLUEA + PYTHON’ under the section ‘Training and Evaluating model”
Can you give any solution.
code : reg.fit(x_train,y_train)
error message:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-38-ae4bf08b45bb> in <module>
----> 1 reg.fit(x_train,y_train)

~\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py in fit(self, X, y, sample_weight)
   1525 
   1526         X, y = check_X_y(X, y, accept_sparse='csr', dtype=_dtype, order="C",
-> 1527                          accept_large_sparse=solver != 'liblinear')
   1528         check_classification_targets(y)
   1529         self.classes_ = np.unique(y)

~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
    753                     ensure_min_features=ensure_min_features,
    754                     warn_on_dtype=warn_on_dtype,
--> 755                     estimator=estimator)
    756     if multi_output:
    757         y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False,

~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
    576         if force_all_finite:
    577             _assert_all_finite(array,
--> 578                                allow_nan=force_all_finite == 'allow-nan')
    579 
    580     if ensure_min_samples > 0:

~\anaconda3\lib\site-packages\sklearn\utils\validation.py in _assert_all_finite(X, allow_nan, msg_dtype)
     58                     msg_err.format
     59                     (type_err,
---> 60                      msg_dtype if msg_dtype is not None else X.dtype)
     61             )
     62     # for object dtype data, we only check for NaNs (GH-13254)

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
2 Answers

365 Team
0
Votes

Hi Porage,
It seems like your input contains values that are not numbers (probably they are strings). 
Could you please display x_train and share the result here?
Best,
The 365 Team

hi,
here it is
type of x_train is ” numpy.ndarray”

X_train:
array([[-0.57735027, -0.09298136, -0.31448545, ..., -0.44798003, -0.91902997, -0.58968976], [-0.57735027, -0.09298136, 3.17979734, ..., 2.23224237, 0.88046927, -0.58968976], [ 1.73205081, -0.09298136, -0.31448545, ..., 2.23224237, -0.91902997, -0.58968976], ..., [-0.57735027, -0.09298136, -0.31448545, ..., -0.44798003, -0.91902997, -0.58968976], [-0.57735027, -0.09298136, -0.31448545, ..., -0.44798003, -0.01928035, 2.8430157 ], [-0.57735027, -0.09298136, -0.31448545, ..., -0.44798003, -0.91902997, -0.58968976]])
Thanks in advanced