# Logistic Regression

I know it may be a more advanced topic, but please provide an explanation or a link to where myself and others may go to understand the linear algebra and operations of the following code:
from sklearn import linear_model

import scipy.stats as stat class LogisticRegression_with_p_values:

def __init__(self,*args,**kwargs):

self.model = linear_model.Logisticregression(*args,**kwargs)

def fit(self,X,y):

self.model.fit(X,y)

denom = (2.0 * (1.0 + np.cosh(self.model.decision_function(X))))

denom = np.tile(denom,(X.shape[1],1)).T

F_ij = np.dot((X / denom).T,X)

Cramer_Rao = np.linalg.inv(F_ij)

sigma_estimates = np.sqrt(np.diagonal(Cramer_Rao))

z_scores = self.model.coef_[0] / sigma_estimates

p_values = [stat.norm.sf(abs(x)) * 2 for x in z_scores]

self.coef_ = self.model.coef_

self.intercept_ = self.model.intercept_

self.p_values = p_values (taken from a video by 365 Data Science about Logistic Regression and how to add p_values to the coefficient (beta estimates) once you fit a model using Sklearn).

import scipy.stats as stat class LogisticRegression_with_p_values:

def __init__(self,*args,**kwargs):

self.model = linear_model.Logisticregression(*args,**kwargs)

def fit(self,X,y):

self.model.fit(X,y)

denom = (2.0 * (1.0 + np.cosh(self.model.decision_function(X))))

denom = np.tile(denom,(X.shape[1],1)).T

F_ij = np.dot((X / denom).T,X)

Cramer_Rao = np.linalg.inv(F_ij)

sigma_estimates = np.sqrt(np.diagonal(Cramer_Rao))

z_scores = self.model.coef_[0] / sigma_estimates

p_values = [stat.norm.sf(abs(x)) * 2 for x in z_scores]

self.coef_ = self.model.coef_

self.intercept_ = self.model.intercept_

self.p_values = p_values (taken from a video by 365 Data Science about Logistic Regression and how to add p_values to the coefficient (beta estimates) once you fit a model using Sklearn).

1 answers ( 0 marked as helpful)

Hi John,
We haven't really been into this, because you don't need explanation, but rather a whole book on econometrics, to be honest.
I suggest using "Econometric Analysis" by William H. Greene. Unfortunately, I don't think any single explanation can help, unless you've been through a thorough journey through econometrics (and the actual formulas, so you can turn them in code).
Best,
The 365 Team