Online Course top-rated free
Customer Analytics in Python

Blend retail marketing understanding with data analytics skills: Master customer segmentation and purchase behaviour modeling in Python

4.9

808 reviews on
7959 students already have enrolled
  • Institute of Analytics
  • The Association of Data Scientists
  • E-Learning Quality Network
  • European Agency for Higher Education and Accreditation
  • Global Association of Online Trainers and Examiners

Skill level:

Advanced

Duration:

10 hours
  • Lessons (5 hours)
  • Projects (5 hours)

CPE credits:

7.5
CPE stands for Continuing Professional Education and represents the mandatory credits a wide range of professionals must earn to maintain their licenses and stay current with regulations and best practices. One CPE credit typically equals 50 minutes of learning. For more details, visit NASBA's official website: www.nasbaregistry.org

Accredited:

certificate

What You Learn

  • Master K-means clustering to identify distinct customer groups accurately.
  • Combine PCA and K-means for improved customer segmentation.
  • Analyse purchase quantity elasticity to assess customer buying decisions.
  • Model purchase incidence using the probability of purchase elasticity.
  • Leverage deep learning to predict future customer behavior precisely.

Topics & tools

pythonfinancial analysisprogrammingdata processingmachine learningdata analysiscustomer analyticsk-means clusteringhierarchical clusteringprincipal component analysis (pca)deep learningtensorflowindustry specializationmachine and deep learning

Your instructor

Course OVERVIEW

Description

CPE Credits: 7.5 Field of Study: Information Technology
Delivery Method: QAS Self Study
Customer Analytics in Python is where marketing and data science meet. These are two of the key driving forces that help companies create value and stay on top in today’s fast-paced economy. In addition, this course is packed with knowledge and includes sections on customer and purchase analytics, as well as a deep-learning model, all implemented in Python.

Prerequisites

  • Python (version 3.8 or later), pandas library, and a code editor or IDE (e.g., Jupyter Notebook, Spyder, or VS Code)
  • Basic familiarity with Python programming is required.

Curriculum

60 lessons 18 exercises 1 project 1 exam

Free preview

Course Introduction

1.1 Course Introduction

7 min

Segmentation, Targeting, Positioning

1.2 Segmentation, Targeting, Positioning

7 min

Marketing Mix

1.3 Marketing Mix

8 min

Physical and Online Retailers: Similarities and Differences.

1.4 Physical and Online Retailers: Similarities and Differences.

7 min

Price Elasticity

1.5 Price Elasticity

8 min

Setting up the environment

2.1 Setting up the environment

1 min

Start for free

9 in 10

people walk away career-ready

with practical data and AI skills.

9 in 10

of our graduates landed a new AI & data job

after enrollment

94%

of AI and data science graduates

successfully change

or advance their careers.

ACCREDITED certificates

Craft a resume and LinkedIn profile you’re proud of—featuring certificates recognized by leading global institutions.

Earn CPE-accredited credentials that showcase your dedication, growth, and essential skills—the qualities employers value most.

  • Institute of Analytics
  • The Association of Data Scientists
  • E-Learning Quality Network
  • European Agency for Higher Education and Accreditation
  • Global Association of Online Trainers and Examiners
A LinkedIn profile mockup on a mobile screen showing Parker Maxwell, a Certified Data Analyst, with credentials from 365 Data Science listed under Licenses & Certification. A 365 Data Science Certificate of Achievement awarded to Parker Maxwell for completing the Data Analyst career track, featuring accreditation badges and a gold “Verified Certificate” seal.

How it WORKS

  • Lessons
  • Exercises
  • Projects
  • Practice Exams
  • AI Mock Interviews

Lessons

Learn through short, simple lessons—no prior experience in AI or data science needed.

Try for free

Exercises

Reinforce your learning with mini recaps, hands-on coding, flashcards, fill-in-the-blank activities, and other engaging exercises.

Try for free

Projects

Tackle real-world AI and data science projects—just like those faced by industry professionals every day.

Try for free

Practice Exams

Track your progress and solidify your knowledge with regular practice exams.

Try for free

AI Mock Interviews

Prep for interviews with real-world tasks, popular questions, and real-time feedback.

Try for free

Student REVIEWS

A collage of student testimonials from 365 Data Science learners, featuring profile photos, names, job titles, and quotes or video play icons, showcasing diverse backgrounds and successful career transitions into AI and data science roles.