Online Course
Data Preprocessing with NumPy

Master Python’s key NumPy package: Apply essential techniques for efficient data preprocessing and analysis

4.9

808 reviews on
24394 students already have enrolled
  • Institute of Analytics
  • The Association of Data Scientists
  • E-Learning Quality Network
  • European Agency for Higher Education and Accreditation
  • Global Association of Online Trainers and Examiners

Skill level:

Intermediate

Duration:

8 hours
  • Lessons (7 hours)
  • Practice exams (1.2 hours)

CPE credits:

12.5
CPE stands for Continuing Professional Education and represents the mandatory credits a wide range of professionals must earn to maintain their licenses and stay current with regulations and best practices. One CPE credit typically equals 50 minutes of learning. For more details, visit NASBA's official website: www.nasbaregistry.org

Accredited:

certificate

What You Learn

  • Add the NumPy library to your data analysis toolkit.
  • Learn how to install and import Python packages.
  • Gain proficiency in NumPy’s ndarray.
  • Explore various techniques to clean and preprocess data.
  • Solve real-world data preprocessing problems using NumPy.

Topics & tools

pythonprogrammingdata analysisdata processingnumpydata preprocessing

Your instructor

Course OVERVIEW

Description

CPE Credits: 12.5 Field of Study: Information Technology
Delivery Method: QAS Self Study
This course is designed to show you how to work with one of Python’s fundamental packages – NumPy. You will learn what a “package” is and see how to install, upgrade and import it. By the time you finish the course, you’ll be comfortable with NumPy’ ndarray class, how to slice and reduce the dimensions of its instances, as well as how to quickly refer to the documentation. Furthermore, you’ll be ready to take advantage of NumPy’s various built-in functions and methods, which we’ll use to generate random and non-random data, import and export data to and from Python, find statistical values for a dataset, and clean and preprocess ndarrays.

Prerequisites

  • Python (version 3.8 or later), NumPy library, and a code editor or IDE (e.g., Jupyter Notebook, Spyder, or VS Code)
  • Completion of an introductory Python course is required.
  • Mathematics

Curriculum

68 lessons 85 exercises 5 exams

Free preview

Course Introduction

1.1 Course Introduction

5 min

The NumPy Package and Its Applications

1.2 The NumPy Package and Its Applications

4 min

Installing and Upgrading NumPy

1.3 Installing and Upgrading NumPy

2 min

What is an array?

1.5 What is an array?

3 min

Using The NumPy Documentation

1.8 Using The NumPy Documentation

5 min

Frequently Asked Questions

1.10 Frequently Asked Questions

1 min

Start for free

$29,000

average salary increase

after moving to an AI and data science career

96%

of our students recommend

365 Data Science.

94%

of AI and data science graduates

successfully change

or advance their careers.

ACCREDITED certificates

Craft a resume and LinkedIn profile you’re proud of—featuring certificates recognized by leading global institutions.

Earn CPE-accredited credentials that showcase your dedication, growth, and essential skills—the qualities employers value most.

  • Institute of Analytics
  • The Association of Data Scientists
  • E-Learning Quality Network
  • European Agency for Higher Education and Accreditation
  • Global Association of Online Trainers and Examiners

Certificates are included with the Self-Study learning plan.

A LinkedIn profile mockup on a mobile screen showing Parker Maxwell, a Certified Data Analyst, with credentials from 365 Data Science listed under Licenses & Certification. A 365 Data Science Certificate of Achievement awarded to Parker Maxwell for completing the Data Analyst career track, featuring accreditation badges and a gold “Verified Certificate” seal.

How it WORKS

  • Lessons
  • Exercises
  • Projects
  • Practice Exams
  • AI Mock Interviews

Lessons

Learn through short, simple lessons—no prior experience in AI or data science needed.

Try for free

Exercises

Reinforce your learning with mini recaps, hands-on coding, flashcards, fill-in-the-blank activities, and other engaging exercises.

Try for free

Projects

Tackle real-world AI and data science projects—just like those faced by industry professionals every day.

Try for free

Practice Exams

Track your progress and solidify your knowledge with regular practice exams.

Try for free

AI Mock Interviews

Prep for interviews with real-world tasks, popular questions, and real-time feedback.

Try for free

Student REVIEWS

A collage of student testimonials from 365 Data Science learners, featuring profile photos, names, job titles, and quotes or video play icons, showcasing diverse backgrounds and successful career transitions into AI and data science roles.