Online Course free
Machine Learning with Support Vector Machines

Master Support Vector Machines (SVMs): from theoretical foundations to practical applications

4.9

808 reviews on
4060 students already have enrolled
  • Institute of Analytics
  • The Association of Data Scientists
  • E-Learning Quality Network
  • European Agency for Higher Education and Accreditation
  • Global Association of Online Trainers and Examiners

Skill level:

Intermediate

Duration:

1 hour
  • Lessons (1 hour)
  • Practice exams (20 minutes)

CPE credits:

2
CPE stands for Continuing Professional Education and represents the mandatory credits a wide range of professionals must earn to maintain their licenses and stay current with regulations and best practices. One CPE credit typically equals 50 minutes of learning. For more details, visit NASBA's official website: www.nasbaregistry.org

Accredited:

certificate

What You Learn

  • Master Support Vector Machines for advanced data analysis.
  • Fully grasp their inner workings and practical applications.
  • Understand the pros and cons of the SVM algorithm.
  • Build and optimize classification models with SVM.
  • Integrate math concepts with hands-on Python programming.

Topics & tools

pythontheoryprogrammingsoft marginkernelsclassificationsupport vector machinesmachine learninghard margingridsearchmachine and deep learning

Your instructor

Course OVERVIEW

Description

CPE Credits: 2 Field of Study: Information Technology
Delivery Method: QAS Self Study
This course is all about Support Vector Machines – one of the most versatile and widely used techniques in supervised learning. They can be applied to both classification and regression tasks and thanks to kernels, fit different data distributions at a reduced computational cost . In this course, you’ll grasp the theory behind support vector machines andhow to implement and optimize a Support Vector Classifier in Python using sk-learn.

Prerequisites

  • Python (version 3.8 or later), Streamlit library, OpenAI API key, and a code editor or IDE (e.g., VS Code or Jupyter Notebook)
  • Intermediate Python skills are required.
  • Familiarity with basic statistics and linear algebra is helpful but not mandatory.

Curriculum

18 lessons 14 exercises 2 exams

Free preview

What does the course cover?

1.1 What does the course cover?

4 min

Introduction to Support Vector Machines

1.2 Introduction to Support Vector Machines

5 min

Linearly separable classes - hard margin problem

1.4 Linearly separable classes - hard margin problem

5 min

Non-linearly separable classes - soft margin problem

1.6 Non-linearly separable classes - soft margin problem

5 min

Kernels - Intuition

1.8 Kernels - Intuition

6 min

Setting up the environment

2.1 Setting up the environment

1 min

Start for free

9 in 10

of our graduates landed a new AI & data job

after enrollment

9 in 10

people walk away career-ready

with practical data and AI skills.

94%

of AI and data science graduates

successfully change

or advance their careers.

ACCREDITED certificates

Craft a resume and LinkedIn profile you’re proud of—featuring certificates recognized by leading global institutions.

Earn CPE-accredited credentials that showcase your dedication, growth, and essential skills—the qualities employers value most.

  • Institute of Analytics
  • The Association of Data Scientists
  • E-Learning Quality Network
  • European Agency for Higher Education and Accreditation
  • Global Association of Online Trainers and Examiners
A LinkedIn profile mockup on a mobile screen showing Parker Maxwell, a Certified Data Analyst, with credentials from 365 Data Science listed under Licenses & Certification. A 365 Data Science Certificate of Achievement awarded to Parker Maxwell for completing the Data Analyst career track, featuring accreditation badges and a gold “Verified Certificate” seal.

How it WORKS

  • Lessons
  • Exercises
  • Projects
  • Practice Exams
  • AI Mock Interviews

Lessons

Learn through short, simple lessons—no prior experience in AI or data science needed.

Try for free

Exercises

Reinforce your learning with mini recaps, hands-on coding, flashcards, fill-in-the-blank activities, and other engaging exercises.

Try for free

Projects

Tackle real-world AI and data science projects—just like those faced by industry professionals every day.

Try for free

Practice Exams

Track your progress and solidify your knowledge with regular practice exams.

Try for free

AI Mock Interviews

Prep for interviews with real-world tasks, popular questions, and real-time feedback.

Try for free

Student REVIEWS

A collage of student testimonials from 365 Data Science learners, featuring profile photos, names, job titles, and quotes or video play icons, showcasing diverse backgrounds and successful career transitions into AI and data science roles.