PD model estimation - PD model estimation
I have an error while fitting the model
reg.fit(inputs_train, loan_data_targets_train)
ValueError Traceback (most recent call last)
<ipython-input-15-966f89d3c717> in <module>
----> 1 reg.fit(inputs_train, loan_data_targets_train)
2 # Estimates the coefficients of the object from the 'LogisticRegression' class
3 # with inputs (independent variables) contained in the first dataframe
4 # and targets (dependent variables) contained in the second dataframe.
~\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py in fit(self, X, y, sample_weight)
1340 _dtype = [np.float64, np.float32]
1341
-> 1342 X, y = self._validate_data(X, y, accept_sparse='csr', dtype=_dtype,
1343 order="C",
1344 accept_large_sparse=solver != 'liblinear')
~\anaconda3\lib\site-packages\sklearn\base.py in _validate_data(self, X, y, reset, validate_separately, **check_params)
430 y = check_array(y, **check_y_params)
431 else:
--> 432 X, y = check_X_y(X, y, **check_params)
433 out = X, y
434
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
71 FutureWarning)
72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 73 return f(**kwargs)
74 return inner_f
75
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)
794 raise ValueError("y cannot be None")
795
--> 796 X = check_array(X, accept_sparse=accept_sparse,
797 accept_large_sparse=accept_large_sparse,
798 dtype=dtype, order=order, copy=copy,
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
71 FutureWarning)
72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 73 return f(**kwargs)
74 return inner_f
75
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
643
644 if force_all_finite:
--> 645 _assert_all_finite(array,
646 allow_nan=force_all_finite == 'allow-nan')
647
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in _assert_all_finite(X, allow_nan, msg_dtype)
95 not allow_nan and not np.isfinite(X).all()):
96 type_err = 'infinity' if allow_nan else 'NaN, infinity'
---> 97 raise ValueError(
98 msg_err.format
99 (type_err,
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
0 answers ( 0 marked as helpful)