The 365 Data Science team is proud to invite you to our own community forum. A very well built system to support your queries, questions and give the chance to show your knowledge and help others in their path of becoming Data Science specialists.
Ask
Anybody can ask a question
Answer
Anybody can answer
Vote
The best answers are voted up and moderated by our team

Scorecard

Scorecard

0
Votes
1
Answer

I got a bunch of only nans in the lecture about creating a scorecard.

 

 

 
 
 

 

min_score=300
max_score=850

 

 
 

In [131]:

min_score

 

 
 
 

 

min_score=scorecard_df.groupby(['Original_names'])['Coef'].min()
min_score

 

 

Out[131]:

Original_names
Intercept                     -1.286588
acc_now_delinq                 0.000000
addr_state                     0.000000
annual_inc                    -0.068937
dti                            0.000000
emp_length                     0.000000
grade                          0.000000
home_ownership                 0.000000
initial_list_status            0.000000
inq_last_6mths                 0.000000
int_rate                       0.000000
mths_since_earliest_cr_line    0.000000
mths_since_issue_d            -0.060627
mths_since_last_delinq         0.000000
mths_since_last_record        -0.049872
purpose                        0.000000
term                           0.000000
verification_status           -0.010562
Name: Coef, dtype: float64

In [130]:

min_score_sum

 

 
 
 

 

min_score_sum=scorecard_df.groupby(['Original_names'])['Coef'].min().sum()
min_score_sum

 

 

Out[130]:

-1.4765851105053986

In [125]:

max_score

 

 
 
 

 

max_score=scorecard_df.groupby(['Original_names'])['Coef'].max()
max_score

 

 

Out[125]:

Original_names
Intercept                     -1.286588
acc_now_delinq                 0.235443
addr_state                     0.524189
annual_inc                     0.577045
dti                            0.389218
emp_length                     0.126174
grade                          0.912940
home_ownership                 0.106218
initial_list_status            0.054820
inq_last_6mths                 0.694467
int_rate                       0.867411
mths_since_earliest_cr_line    0.131432
mths_since_issue_d             1.091989
mths_since_last_delinq         0.239036
mths_since_last_record         0.286678
purpose                        0.300414
term                           0.078659
verification_status            0.084432
Name: Coef, dtype: float64

In [126]:

ore_sum

 

 
 
 

 

max_score_sum=scorecard_df.groupby(['Original_names'])['Coef'].max().sum()
max_score_sum

 

 

Out[126]:

5.413976291458666

In [127]:

_df

 

 
 
 

 

scorecard_df['Score']=scorecard_df['Coef']*(max_score-min_score)/(max_score_sum-min_score_sum)

 

 
 

In [132]:

 

 
 
 

scorecard_df.Score.unique()

 

 

Out[132]:

array([nan])
 
1 Answer

365 Team
0
Votes

Hi there,
Are you sure that you indexes are correct? 
I would be easiest if you provide your notebook so we can examine it.
Best,
Iliya